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Fraïssé theory

Theorem
Let K be a category

and let L be a free completion of K.
There exists a cofinal homogeneous object U in ⟨K,L⟩ if and only
if K is a Fraïssé category, i.e.

1 K is directed,
2 K has the amalgamation property,
3 K is dominated by a countable subcategory.

Such object U is unique and cofinal in L. It is called the Fraïssé
limit.

Genealogy: Fraïssé (countable structures), Droste and Göbel
(categories), Kubiś (domination, Fraïssé sequences), B. (free
completion)
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Weak amalgamation property

Let K be a category and let α : a → a′ be a K-map. We put
K(α, b) := K(a′, b) ◦ α = {f ∈ K(a, b) : f factorizes through α}.

Definition
A K-map α : a → a′ is amalgamable if for every f ∈ K(α, b) and
g ∈ K(α, c) there are f ′, g ′ ∈ K such that f ′ ◦ f = g ′ ◦ g .
K has the weak amalgamation property if for every a ∈ Ob(K)
there is an amalgamable map α : a → a′.

• If α is amalgamable, then α ◦ β and γ ◦ α are amalgamable.
• If C ⊆ K is a full cofinal subcategory, then a C-map α is

amalgamable in C if and only if α is amalgamable in K.
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Weak Fraïssé theory

Theorem (Kubiś)

Let K be a category and let L be a free completion of K.
There exists a cofinal weakly homogeneous object U in ⟨K,L⟩ if
and only if K is a weak Fraïssé category, i.e.

1 K is directed,
2 K has the weak amalgamation property,
3 K is weakly dominated by a countable subcategory.

Such object U is unique and cofinal for L-objects that are limits of
K-sequences consisting of amalgamable maps.

Proposition
Let C,D ⊆ K be full cofinal subcategories. Then C is weak Fraïssé
if and only if D is weak Fraïssé, and they have the same Fraïssé
limit.
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Example – strong trees

Let M ⊆ N+ and let TM denote the following category:

• Objects are finite trees T endowed with a lexicographic order
(“from left to right”) such that for every non-terminal node
t ∈ T the splitting degree spl(t) ∈ M.

• Morphisms are embeddings preserving the meets, the
lexicographic order, and the splitting degrees.

Let DM denote the modification of TM where the splitting degree
is preassigned also to every terminal node (and is preserved by the
embeddings).

Proposition
TM and DM are full cofinal subcategories of a common
supercategory. TM is weak Fraïssé, while DM is Fraïssé. TM and
DM have a common Fraïssé limit UM – a certain universal
countable tree with branches isomorphic to Q, related to the
universal Ważewski dendrite WM+1.
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(Weak) Ramsey property
Let K be a category, a, b, c ∈ Ob(K), k ∈ ω, F ⊆ K(a, b) finite.

• c → (b)a
k,F means that for every coloring φ : K(a, c) → k

there is f : b → c such that φ is constant on f ◦ F .
• K has the Ramsey property if (∀a, b, k,F )(∃c) c → (b)a

k,F .

Definition
A K-map α : a → a′ is Ramsey if (∀b, k,F )(∃c) c → (b)αk,F

(where c → (b)αk,F concerned with colorings φ : K(α, c) → k).
K has the weak Ramsey property if for every a ∈ Ob(K) there is a
Ramsey map α : a → a′.

• If α is Ramsey, then α ◦ β and γ ◦ α are Ramsey.
• If K is directed and α is Ramsey, then α is amalgamable.
• If K has WRP and α is amalgamable, then α is Ramsey.
• So in a directed category we have RP ⇐⇒ WRP & AP.
• If C ⊆ K is a full cofinal subcategory, then a C-map α is

Ramsey in C if and only if α is Ramsey in K.
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(where c → (b)αk,F concerned with colorings φ : K(α, c) → k).
K has the weak Ramsey property if for every a ∈ Ob(K) there is a
Ramsey map α : a → a′.

• If α is Ramsey, then α ◦ β and γ ◦ α are Ramsey.
• If K is directed and α is Ramsey, then α is amalgamable.
• If K has WRP and α is amalgamable, then α is Ramsey.
• So in a directed category we have RP ⇐⇒ WRP & AP.

• If C ⊆ K is a full cofinal subcategory, then a C-map α is
Ramsey in C if and only if α is Ramsey in K.
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Topological dynamics

A continuous action G ↷ X of a topological group G on a
topological space X is a continuous map G × X → X such that
the corresponding map G → XX is a homomorphism.

A topological group G is extremely amenable if every continuous
action G ↷ X on a compact space has a fixed point.

Definition (Pestov)

An action G ↷ X on a discrete space is finitely oscillation stable if
for every finite F ⊆ X , every k ∈ ω, and every coloring φ : X → k
there is g ∈ G such that φ is constant on gF .

Theorem (essentially Kechris–Pestov–Todorčević, 2005)

A topological group G with a neighborhood base V at the unit
consisting of open subgroups is extremely amenable if and only if
the actions G ↷ G/V for V ∈ V are finitely oscillation stable.
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Topological dynamics

Let ⟨K,L⟩ be a free completion and U an L-object.

• Aut(U) has a completely metrizable topology whose base at
identity consists of the stabilizers of the actions
Aut(U) ↷ L(a,U), a ∈ Ob(K).

• The topology is separable (and so Polish) if and only if K is
locally countable.

• In the classical case when U is a countable structure, this is
the topology of pointwise convergence.

Theorem (B., Bice, Dasilva Barbosa, Kubiś)

If U is a cofinal weakly homogeneous object in a free completion
⟨K,L⟩, then a K-map α is Ramsey if and only if the action
Aut(U) ↷ L(α,U) is finitely oscillation stable.
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Kechris–Pestov–Todorčević correspondence

Theorem (B., Bice, Dasilva Barbosa, Kubiś)

If U is a cofinal weakly homogeneous object in a free completion
⟨K,L⟩, then the topological group Aut(U) is extremely amenable if
and only if the category K has the weak Ramsey property.

Classical KPT correspondence is concerned with first-order
structures. We generalize in two ways:

• from classes of structures to categories,
• from Fraïssé categories to weak Fraïssé categories.

(A weak Fraïssé category has the Ramsey property if and only if it
has the weak Ramsey property and the amalgamation property.)
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Example – strong trees (continued)
• For every M ⊆ N+ the weak Fraïssé category TM has the

weak Ramsey property (but not the Ramsey property since it
has no amalgamable objects).

• This is because the Fraïssé category DM has the Ramsey
property (essentially proved by Kwiatkowska).

• It follows that the automorphism group of the universal tree
UM is extremely amenable.

Question
Let T ′

M and D′
M be the modified categories of strong trees where

the levels are part of the structure and the embeddings are
required to preserve them. Does T ′

M have the weak Ramsey
property? Equivalently, does D′

M have the Ramsey property?

• We have shown that T ′
M is weak Fraïssé and that D′

M is
Fraïssé, and characterized their common Fraïssé limit.

• The case M = {m} follows from the Milliken’s theorem.
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Theorem (B., Bice, Dasilva Barbosa, Kubiś)

If U is a cofinal weakly homogeneous object in a free completion
⟨K,L⟩, then the topological group Aut(U) is extremely amenable if
and only if the category K has the (weak) Ramsey property.
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